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The Goal: A Symmetry for Confinement

• Following on from Jonathan’s introduction to 0-form symmetries, we
want to apply this language to a specific problem: confinement.

• The classic "area law" criterion for confinement, while useful, has
limitations (non-local, string breaking).

• Goal: Can we generalise the notion of symmetry itself to find a
more fundamental description of confinement?

Table of Contents:

1. Generalise from 0-Form to p-Form Global Symmetries
2. Specialise to 1-Form Symmetries in Gauge Theory
3. Connect to Confinement
4. (If time permits) A Worked Example in SU(2)
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Generalising Symmetries



Recap and Generalisation

• As we saw in the previous talk, a 0-form symmetry is characterised
by:

• Charged operators are points (0-dimensional).
• The charge is defined on a codimension-1 surface.

• Generalisation: A p-form symmetry is characterised by:
• Charged operators are p-dimensional surfaces.
• p-form symmetries are codimension-(p + 1) invertible, topological

operators.

Today, we are interested in the next simplest case: 1-form symmetries.
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1-Form Symmetries and Non-Locality

• For a 1-form symmetry, the charged objects are lines
(1-dimensional), like a Wilson line:

WR(C) = TrRP exp(i
∮

C
Aµdxµ)

This operator is non-local: its value depends on the gauge field Aµ at every
point along the entire path C .

• The charge operator Ug (Σd−2) acts on a line operator W (C) when
they link. This topological condition ensures compatibility with
Noether’s theorem.
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Topological Nature of Charge Operators

0-Form Analogy A charge
operator Ug (Σd−1) on a sphere can
be shrunk. If it encloses no charge,
it shrinks to a point (gives Identity).

Shrinks if empty

1-Form Case A charge operator
Ug (Σd−2) can be deformed. If it
doesn’t link with a charged line, it
can be shrunk away (gives Identity).

Shrinks if unlinked

Linking is the key topological obstruction for 1-form symmetries.
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Abelian Nature of Higher Symmetries

• A key feature of p > 0-form symmetries is that their symmetry
group must be Abelian.

• This can be understood topologically: codimension-1 charge surfaces
can always be ordered and slid past one another.

• Surfaces of codimension > 1 can be topologically linked, but the
algebra of operators remains commutative.

• This means that even when the underlying gauge group G is
non-Abelian (like SU(N)), the resulting 1-form symmetry group (its
centre Z (G)) must be Abelian.
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1-Form Symmetries in Gauge
Theory



Constructing the Charge Operator

How do we build Ug from a conserved current?

• Start with a conserved current. For a 1-form symmetry, this is a
2-form current J satisfying d ⋆ J = 0.

• Define the conserved charge Q as the flux of this current through a
codimension-2 surface Σd−2:

Q(Σd−2) =
∫

Σd−2

⋆J

• The symmetry operator Ug is the exponential of this charge:

Ug (Σd−2) = exp (iαQ(Σd−2))

(for some normalisation α).
• Because d ⋆ J = 0, this operator is topological - its value is invariant

under smooth deformations of Σd−2.
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The Two Symmetries in U(1) Theory

Goal: Apply this to Maxwell theory in d dimensions.

Setup: The field is the 2-form field strength F = dA. The equations of
motion in a source-free region are:

dF = 0 (Bianchi Identity)
d ⋆ F = 0 (Dynamical EOM)

We can now treat both F and ⋆F as conserved currents to generate
symmetries.
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The Two Symmetries Continued

The Magnetic 1-Form Symmetry

• From the Bianchi Identity: dF = 0.
• This is a mathematical identity (topological). It holds off-shell.
• We can treat F as a conserved 2-form current. The charged objects

are magnetic lines.
• (More formally, this symmetry relates to topological classes of the gauge bundle,

but dF = 0 provides the direct physical picture.)

The Electric 1-Form Symmetry

• From the Equation of Motion: d ⋆ F = 0.
• This is only true on-shell (dynamical).
• We treat ⋆F as the conserved current. The charged objects are

electric lines (Wilson lines).
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Summary for General Gauge Theories

For a general gauge group G (like SU(N)):

• Magnetic 1-Form Symmetry: Typically U(1). Charged objects are
magnetic lines.

• Electric 1-Form Symmetry: This is the important one for
confinement.

• It corresponds to the centre of the gauge group, Z(G). For SU(N),
this is ZN . This means the gauge group for a 1-form symmetry is
coarse-grained, in the sense that the symmetry only sees charges up
to N-ality.

• The objects charged under this symmetry are the representations of
Wilson lines with nontrivial N-ality.

The point being: We have a symmetry that acts directly on Wilson
lines, which allows us to use symmetry principles to study confinement.
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Confinement



Confinement and the Electric 1-Form Symmetry

The expectation value ⟨W (C)⟩ tells us how the vacuum responds to the
insertion of charged Wilson lines.

Case 1: Symmetry is preserved
• The vacuum is disordered.
• Wilson lines are suppressed.
• ⟨W (C)⟩ ∼ exp(−Area(C))
• Confinement

Case 2: Symmetry is broken
• The vacuum is ordered.
• Wilson lines condense.
• ⟨W (C)⟩ ∼ exp(−Perimeter(C))
• Deconfined / Higgs phase

Confinement is the phase where the electric 1-form symmetry is
preserved.
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Physical Picture: Why Does This Work?

• What does a "disordered vacuum" (preserved symmetry) mean
physically?

• It means the vacuum is a fluctuating condensate of objects charged
under the magnetic 1-form symmetry.

• The vacuum is a sea of virtual magnetic loops (monopole
world-surfaces).

Confining Vacuum

W(C)

When the Wilson loop is inserted, the fluctuating magnetic loops link
with it, causing its phase to decohere. The bigger the area, the more
decoherence =⇒ Area Law.
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A Worked Example



Operator Action via Deformation

• The action of the topological operator Ug on WR can be seen by
deforming/sliding the operator off the line.

• This is equivalent to cutting the loop, inserting a group element
g ∈ Z (G), and rejoining.

Ug

WR slide off g WR

For an irrep R, this multiplies the operator by a phase:

W ′
R(γ) = TrR(g)

TrR(Id)WR(γ)

12
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Worked Example: SU(2) Spin-s Representation

Problem: Take G = SU(2) and let Rs be the spin-s representation.
What is the phase obtained for the Wilson line W (s) from the non-trivial
centre element?

• The centre is Z (SU(2)) = {+I, −I} ≃ Z2. The non-trivial element
is g = −I.

• The phase is given by the formula Trs (−I)
Trs (I) .

• The spin-s representation has dimension 2s + 1. So, the identity
matrix has trace Trs(±I) = ±(2s + 1).

• The phase is given by (−1)2s .
• For integer spins (s ∈ {0, 1, . . . }), 2s is even, phase is +1.

(Uncharged)
• For half-integer spins (s ∈ {1/2, 3/2, . . . }), 2s is odd, phase is −1.

(Charged)

Result
Only Wilson lines in half-integer spin representations are charged under
the Z2 1-form symmetry.
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Summary

• By generalising from 0-form to 1-form symmetries, we find
symmetries that act on lines.

• Gauge theories possess a key electric 1-form symmetry that acts on
Wilson lines.

• The status of this symmetry provides a precise, non-perturbative
definition of confinement
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